a2 United States Patent

Lakshminarayan et al.

US009158815B2

(10) Patent No.: US 9,158,815 B2

(54)

(735)

(73)

")

@

(22)

(65)

(1)

(52)

ESTIMATING A NUMBER OF UNIQUE
VALUES IN A LIST

Inventors: Choudur Lakshminarayan, Austin, TX
(US); Joe Robert Hill, Austin, TX (US)

Assignee: Hewlett-Packard Development
Company, L.P., Houston, TX (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 670 days.

Appl. No.: 12/907,325

Filed: Oct. 19, 2010

Prior Publication Data

US 2012/0095989 A1 Apr. 19, 2012

(45) Date of Patent: Oct. 13,2015
(58) Field of Classification Search

CPC ittt GOG6F 17/18

USPC ottt 707/750

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2007/0220017 Al* 9/2007 Zuzarteetal. ... 707/100
2009/0192980 Al 7/2009 Beyer
2010/0030728 Al* 2/2010 Chakkappenetal. ... 7072

2010/0114869 Al 5/2010 Deolalikar

* cited by examiner

Primary Examiner — Ajith Jacob
(74) Attorney, Agent, or Firm — Michael A. Dryja

(57) ABSTRACT

A method determines a number of unique values in a sample

Int. CL. of'alist of values and estimates a number of the unique values
GOGF 7/00 (2006.01) for an unsampled portion of the list of values. The method
GO6F 17/30 (2006.01) estimates a number of the unique values in the list by adding
GOGF 17/18 (2006.01) the number of unique values in the sample to the number of
U.S. CL the unique values in the unsampled portion.

CPC GO6F 17/30469 (2013.01); GOGF 17/18

(2013.01) 14 Claims, 3 Drawing Sheets
100
~a DBMS
120
Workload

User Queries Management
us [130 —

DBMS Core

(Admission ControI\

(Query Estimator\

132 or Optimizer
— | 142
s . N
- SCh?g:“ng & (Execution Engine\
Database N J 144
150 (Execution Control) [lterator J
136 146

J

U.S. Patent Oct. 13, 2015 Sheet 1 of 3 US 9,158,815 B2

100

~ DBMS

120

Workload

User Queries | Management DBNE(?OE
110 115 130 =+

e . ™
(Admission Control\ Query E?"T”at”
132 or Optimizer
— Y, 142

e —\
D SCth:“ng ¢=>| [Execution Engine)

Database <:> N~ / 144
150 (Execution Control\ [Iterator j

146
138 J _ y,

.

FIG. 1

U.S. Patent Oct. 13, 2015 Sheet 2 of 3 US 9,158,815 B2

Receive a database query
200

l

Evaluate multiple query
execution paths with a query
estimator
210

|

Select one of the query
execution paths
220

l

Execute the query with the
selected query execution
path
230

l

Provide query results
240

FIG. 2

U.S. Patent Oct. 13, 2015 Sheet 3 of 3 US 9,158,815 B2

Retrieve a sample portion from a database
300

v

Calculate frequency of unique values in the
sample portion
310

v

Calculate frequency of unique values in an
unsampled portion
320

I

Calculate a sum of the frequencies of
unigue values in the sampled and
unsampled portions
330

:

Select an optimal query execution path
based on the sum

340
FIG. 3
400
- \ Computer System 420
Data S— Processing Memory
430 Unit 450
440 Applications,
data, etc.

FIG. 4

US 9,158,815 B2

1

ESTIMATING A NUMBER OF UNIQUE
VALUES IN A LIST

BACKGROUND

In a database management system (DBMS), query estima-
tors use variations of probabilistic counting to determine a
query path. While these estimators take into account skew-
ness and other lower order moments of the sampled data, they
ignore other characteristics of data distribution and, as such,
can produce inaccurate and inefficient query plans.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a database system that manages the execution of
database queries and query plans in accordance with an
example implementation.

FIG. 2 is a flow diagram of a method for selecting a query
path in accordance with an example implementation.

FIG. 3 is a flow diagram of a method for determining a
number of unique values that occur in a list in accordance
with an example implementation.

FIG. 41is acomputer system in accordance with an example
implementation.

DETAILED DESCRIPTION

Example implementations are systems, methods, and
apparatuses that estimate a number of unique values in a list.

One example embodiment implements an interval estima-
tor for the number of unique values in the list based on a
sample of values from the list. The estimator uses a statistical
model for the frequencies of unique values observed in the
sample and values not observed in the sample. The estimator
also uses a prior distribution for the number of unique values
in the list. An estimate is the interval containing the number of
unique values that are most likely or that have a highest
posterior density.

A variety of different embodiments can execute the esti-
mator. By way of example, the estimator can be implemented
in a primary decision model, such as the decision model used
by a query optimizer in a database management system
(DBMS). The DBMS estimates a number of unique values of
an attribute in a database. Alternatively, example embodi-
ments can be implemented in other applications that use
estimation, such as linguistic analysis, unique species analy-
sis, web content or document word analysis, etc.

FIG.1is a database system 100 for managing the execution
of database queries and query plans in accordance with an
example embodiment.

The system generally includes a computer, client, or user
110 that sends queries 115 to a Database Management Sys-
tem (DBMS) 120 which includes a workload management
component 130 and a DBMS core 140. The workload man-
agement component includes plural components or modules,
such as admission control 132, scheduling 134, and execution
control 136. The DBMS core 140 includes plural components
or modules, such as a query estimator and/or query optimizer
142, and an execution engine 144. The execution engine
includes plural components or modules, such as an iterator
146.

The workload management architecture 130 provides fun-
damental workload management functionality for admission
control, scheduling, and execution control. In one embodi-
ment, each of these modules 132, 134, and 136 can be
adjusted to select from a variety of workload management
policies and algorithms.

10

20

25

30

35

40

45

50

55

60

65

2

In one embodiment, the database system executes work-
loads that include one or more jobs or queries. Each job
consists of an ordered set of typed queries 115 submitted by
the computer or user 110 and can be. Each query type maps to
atree of operators, and each operator in a tree maps in turn to
its resource costs.

Policies of the admission control 132 determine the sub-
mission of queries 115 to the execution engine 144 that
executes the submitted queries. The admission control 132
performs several functions in workload management. First,
when a new job arrives, admission control 132 evaluates the
DBMS’s multiprogramming level, and submits each of the
job’s queries. Second, the architecture is configurable to sup-
port multiple admission queues. Policies of the admission
control 132 regulate the distribution of queries among these
queues, for example adding queries to queues based on esti-
mated cost or dominant resource. Third, when the execution
engine 144 has finished processing a query, admission control
132 selects the next query for execution.

Once queries have been queued, the policies of the sched-
uler 134 determine the ordering of the queries within a queue
(for example, by estimated cost). Policies of the execution
control 136 then govern the flow of the running system to one
or more processors or central processing units (CPUs). Data
is retrieved from a warehouse or database 150, such as a
multi-dimensional database.

FIG. 2 shows a flow diagram of a method for selecting a
query path in accordance with an example implementation.
FIG. 2 is discussed in connection with FIG. 1.

According to block 200, a query is received or generated.
For example, a user 110 generates a query 120 (such as a
Structured Query Language (SQL) statement) to the DBMS
120 which extracts selected portions of data stored the multi-
dimensional database 150. The query is provided to the query
estimator or query optimizer 142.

According to block 210, the query estimator evaluates
multiple query execution paths. For example, the DBMS 120
generates multiple different execute paths through tables in
the database 150 for executing the query. The query estimator
142 evaluates these different paths through multiple database
tables to determine an optimal path (e.g., which query path
can be executed in the shortest time period). Different query
plans produce a same database output (i.e., provide a same
search result to the query), but each plan can have different
costs relative to run time execution. For instance, an optimal
path is a path with the least run time execution.

During evaluation of the query, a determination is made of
the number of unique entity counts (UECs) in the database
tables. One component of query optimization is the estima-
tion of the number of unique values in the columns of the
database tables. In this context, one embodiment refers to the
unique values as UECs.

For example, an SQL query is converted into a number of
relational operators stored in computer memory to form a
query tree. Each node of the tree represents a relational opera-
tor, such as a “sort” or “merge” operator. The query optimizer
explores a large number of different logically equivalent
forms of the query tree (called “plans™) for executing the
same query; here, “logically equivalent” means the query
plans produce the same database outputs, but may have very
different costs relative to run time execution. The DBMS
selects a query plan with a lowest estimated cost (i.e., lowest
amount of computer resources utilized by the computer in
executing the SQL statement and consider such factors as the
number of input/outputs (I/0’s) or CPU instructions).

A DBMS can arrange an order of query operations to
optimize execution of a query. When the actual number of

US 9,158,815 B2

3

unique values for an attribute is unknown, the number is
estimated. For instance, this estimate is used to determine the
order in which to join tables. An accurate estimate of the
number of unique values for an attribute is also useful in
methods that reorder and group items. An estimate computed
from a sample is typically used for large tables, rather than an
exact count of the unique values, because computing the exact
count is too time consuming for large tables.

According to block 220, one of the multiple query paths is
selected. For example, the query estimator 142 selects an
optimal query path to execute the query.

According to block 230, the query is executed with the
selected query path. According to block 240, results of the
query are provided to a user, transmitted, stored, or used for
further processing. For example, the results of the query are
displayed to the user on a display, stored in a computer, or
provided to another software application.

FIG. 3 shows a flow diagram of a method for determining
a number of unique values that occur in a list in accordance
with an example implementation.

According to block 300, a sample of records or data from a
database are retrieved or received. For example, samples of
data from one or more tables in a database are collected (e.g.,
collected at a preset time, at predetermined intervals of time,
or upon a specific request).

Database tables include a large amount of data in columns
and rows with unique values. For example, these tables can
have many dimensions with millions or hundreds of millions
of unique values. Since the tables are so large, it is not com-
putationally feasible to analyze all of the data. Example
embodiments analyze a sample portion of these tables to
predict or estimate a number of unique values in both the
sampled portion of data and the non-sampled portion of data.
By way of illustration, if the tables have 100 million unique
values, then an example embodiment can sample about one
percent of these values (i.e., a sample size of one million
values).

According to block 310, a calculation is made of a fre-
quency of unique values in the sample portion retrieved from
the database. For example, a determination or estimation is
made from the number of unique values in the columns of a
sampled portion the database tables.

According to block 320, a calculation is made of a fre-
quency of unique values in an unsampled portion of the
database. For example, a determination or estimation is made
of the number of unique values in the columns of a non-
sampled portion the database tables.

According to block 330, a calculation is made of a sum of
frequency of unique values from the sampled and the
unsampled portions (i.e. the frequency of unique values from
the sampled portion are added to the frequency of unique
values from the non-sampled portion).

By way of example, assume that a sample portion of
records are initially retrieved or received from a table in a
database. Based on the number of unique values in this
sample portion, the DBMS estimates the number of unique
values for an attribute in the entire table. Example embodi-
ments are thus not required to execute a full scan of the table
to estimate a number of unique values in the table.

According to block 340, the frequencies of unique values
in the sampled and unsampled portions are used to select an
optimal query path to execute a query.

The following example illustrates the method of FIG. 3.

Letj=1, ..., kindex the unique values in a list. Let X; be the
frequency of the j-th unique value occurring in the sample for
=1, ..., k,, where k, is the number of unique values that

occur in the sample (i.e, X;>0, for j=1, . . ., k,). Let Y, be the

10

15

20

25

30

35

40

45

50

55

60

65

4

frequency in the unsampled portion of the list for the j-th
unique value, j=1, . . ., k, where k=k_ +k,, with k, being the
number of unique values in the list that do not occur in the
sample (i.e., X,=0 for j=k_ +1, .. ., k,+k;). Let M be the sum
of all of the X;’s and Y’s, that is, M is the cardinality of the
whole list. In one example embodiment, M, k+, and the posi-
tive X ’s are known, but k, and the Y’s are unknown.

One example embodiment generates an interval estimator
for k,, and hence k. This example embodiment defines a
family ofjoint probability distributions fork, and the X;’s and
Y,’s, indexed by a parameter theta. For example, given their
unknown occurrence rates, the X;’s and Y,’s can be indepen-
dent Poisson random variables, and the theta can be the hyper-
parameter for a family of Gamma prior distributions for the
occurrence rates. In this case, X; and Y, are conditionally
independent given their common occurrence rate, but not

marginally.

For a fixed k,, the log-likelihood function based on the joint
probability distribution of {(X,Y)): j=1, ..., k} is decom-
posed into three components as follows:

1. The log-likelihood (IL1) based on the marginal distribu-
tions of the X’s: specifically, sum {log p(XItheta)},
where the sum ranges over j=1, . . ., k,+k,.

2. The log likelihood (I.2) based on the conditional prob-
ability distributions of the Y;’s given the X’s, for j*s with
X,>0: specifically, sum {log p(Y,IX,, theta)}, where the
sum ranges over j=1, ..., k,.

3. The log-likelihood (L.3) based on the conditional prob-
ability distributions of the Y;’s given the X’s, for j*s with
X~0: specifically, sum {log p(Y,IX,=0, theta)}, where
the sum ranges over j=k, +1, ..., k.

One example embodiment adds [L1, [.2, and [.3 to generate
an overall log-likelihood function for (k,, theta): specifically,
L=L1+L2+L3. This addition involves the Y’s as well which
are not known. A sum over these values is performed in order
to generate a likelihood for (k,, theta).

When a prior distribution for theta is available, the example
embodiment integrates exp(L) with respect to this prior to
form a likelihood for k,, by itself. If such a prior distribution is
not available, the example embodiment plugs in estimates of
theta based on method of moments, or maximum quasi-like-
lihood, or maximum likelihood, which results in a partial
log-likelihood for k. In some situations, there will be a prior
distribution for k, based on past experience, which can be
combined with [to form a posterior distribution for k. In any
of'these cases, example embodiments generate the set ofk,’s
having the highest likelihood or posterior.

Example embodiments generate reasonable probability
models for the underlying data distributions and thus over-
come the deficiencies of existing non-parametric estimators.
Furthermore, example embodiments execute for a variety of
skewness conditions and are applicable even when the under-
lying probabilistic assumptions are not satisfied.

FIG. 4 is a computer system 400 that executes one or more
portions of methods, flow diagrams and/or aspects of
example embodiments.

The system 400 includes a computer system 420 (such as a
host or client computer) and a repository, warehouse, or data-
base 430. The computer system 420 comprises a processing
unit 440 (such as one or more processors of central processing
units, CPUs) for controlling the overall operation of memory
450 (such as random access memory (RAM) for temporary
data storage and read only memory (ROM) for permanent
data storage). The memory 450, for example, stores applica-
tions, data, control programs, algorithms (including diagrams
and methods discussed herein), and other data associated with
the computer system 420. The processing unit 440 commu-

US 9,158,815 B2

5

nicates with memory 450 and data base 430 and many other
components via buses, networks, etc.

As used herein and in the claims, the following terms are
defined as follows:

A “database” is a structured collection of records or data
that are stored in a computer system so that a computer
program or person using a query language (such as SQL) can
consult it to retrieve records and/or answer queries. Records
retrieved in response to queries provide information used to
make decisions. Further, the actual collection of records is the
database, whereas the DBMS is the software that manages the
database.

A “database management system” or “DBMS” is computer
software and/or hardware designed to manage databases.

A “query” is a request for retrieval of information from a
database.

A “query optimizer” or “query estimator” is a component
of a database management system (DBMS) that attempts to
determine an efficient or optimal way to execute a query.
Query optimizers evaluate different possible query plans for
a given input query and determine which one of those plans is
most efficient. Cost-based query optimizers assign an esti-
mated “cost” to each possible query plan, and choose the plan
with the smallest cost. Costs are used to estimate the runtime
cost of evaluating the query, in terms of the number of /O
operations required, the CPU requirements, and other factors.
The set of query plans examined is formed by examining the
possible access paths (e.g. index scan, sequential scan) and
join algorithms (e.g., sort-merge, hash join, nested loops).

A “query plan” is a set of steps used to access information
in database management system. For example, in an SQL
database, multiple alternate ways with varying performance
exist to execute a given query. When a query is submitted to
the database, a query optimizer evaluates some of the differ-
ent possible plans for executing the query and returns one or
more possible results.

A “table” when used in the context of a database is a logical
representation of data in a database in which a set of records
is represented as a sequence of rows, and the set of fields
common to all the records is represented as a series of col-
umns. The intersection of a row and column represents the
data value of a particular field of a particular record. The
columns are identified by name, and the rows are identified by
values in a particular column subset which is identified as a
candidate key.

“Structured Query Language” or “SQL” is a database com-
puter language designed for the retrieval and management of
data in a relational database management system, database
schema creation and modification, and database object access
control management. SQL provides a programming language
for querying and modifying data and managing databases (for
example, retrieve, insert, update, and delete data, and perform
management and administrative functions).

A “unique entry count” or “UEC” is the number of unique
values within a column of a table.

In one example embodiment, one or more blocks or steps
discussed herein are automated. In other words, apparatus,
systems, and methods occur automatically. The terms “auto-
mated” or “automatically” (and like variations thereof) mean
controlled operation of an apparatus, system, and/or process
using computers and/or mechanical/electrical devices with-
out the necessity of human intervention, observation, effort
and/or decision.

The methods in accordance with example embodiments
are provided as examples and should not be construed to limit
other embodiments within the scope of the invention. Further,
methods or steps discussed within different figures can be

25

30

40

45

55

60

6

added to or exchanged with methods of steps in other figures.
Further yet, specific numerical data values (such as specific
quantities, numbers, categories, etc.) or other specific infor-
mation should be interpreted as illustrative for discussing
example embodiments. Such specific information is not pro-
vided to limit example embodiments.

In some example embodiments, the methods illustrated
herein and data and instructions associated therewith are
stored in respective storage devices, which are implemented
as one or more computer-readable or computer-usable stor-
age media or mediums. The storage media include different
forms of memory including semiconductor memory devices
such as DRAM, or SRAM, FErasable and Programmable
Read-Only Memories (EPROMs), Electrically Erasable and
Programmable Read-Only Memories (EEPROMs) and flash
memories; magnetic disks such as fixed, floppy and remov-
able disks; other magnetic media including tape; and optical
media such as Compact Disks (CDs) or Digital Versatile
Disks (DVDs). Note that the instructions of the software
discussed above can be provided on one computer-readable
or computer-usable storage medium, or alternatively, can be
provided on multiple computer-readable or computer-usable
storage media distributed in a large system having possibly
plural nodes. Such computer-readable or computer-usable
storage medium or media is (are) considered to be part of an
article (or article of manufacture). An article or article of
manufacture can refer to any manufactured single component
or multiple components.

Example embodiments are implemented as a method, sys-
tem, and/or apparatus. As one example, example embodi-
ments and steps associated therewith are implemented as one
or more computer software programs to implement the meth-
ods described herein. The software is implemented as one or
more modules (also referred to as code subroutines, or
“objects” in object-oriented programming). The software
programming code, for example, is accessed by a processor or
processors of the computer or server from long-term storage
media of some type, such as a CD-ROM drive or hard drive.
The software programming code is embodied or stored on any
of'avariety of known physical and tangible media for use with
a data processing system or in any memory device such as
semiconductor, magnetic and optical devices, including a
disk, hard drive, CD-ROM, ROM, etc. The code is distributed
on such media, or is distributed to users from the memory or
storage of one computer system over a network of some type
to other computer systems for use by users of such other
systems. Alternatively, the programming code is embodied in
the memory and accessed by the processor using a bus. The
techniques and methods for embodying software program-
ming code in memory, on physical media, and/or distributing
software code via networks are well known and will not be
further discussed herein.

The above discussion is meant to be illustrative of the
principles of various example embodiments. Numerous
variations and modifications will become apparent to those
skilled in the art once the above disclosure is fully appreci-
ated. It is intended that the following claims be interpreted to
embrace all such variations and modifications.

What is claimed is:

1. A method executed by a computer system, comprising:

storing, in the computer system, a list of values;

determining, with the computer system, a number of
unique values and a frequency of the unique values fora
sample of the list of values;

estimating, with the computer system, a number of unique

values and a frequency of the unique values for an
unsampled portion ofthe list of values, by adding a value

US 9,158,815 B2

7

based on a distribution family for the frequency of the
unique values for the sample to a value based on a
conditional probability distribution family for the fre-
quency of the unique values in the unsampled portion
given the frequency of the unique values for the sample;
and

estimating, with the computer system, a number of unique

values in the list by adding the determined number of
unique values in the sample to the estimated number of
unique values in the unsampled portion.

2. The method of claim 1 further comprising:

defining, given each possible number of the unique values

in the list, a family of joint probability distributions for
the frequencies of the unique values in the list, wherein
the family is indexed by a parameter that determines a
family of distributions for the frequency of the unique
values in the sample and a family of conditional distri-
butions for the frequency of the unique values in the
unsampled portion of the list given the frequency of the
unique values in the sample.

3. The method of claim 1 further comprising:

calculating a family of joint probability distributions to

determine the number of the unique values in the
unsampled portion of the list.

4. The method of claim 1 further comprising:

determining a log-likelihood for the number of the unique

values in the

unsampled portion of the list.

5. The method of claim 1 wherein the value based on the
distribution family for the frequency of the unique values for
the sample, and the value based on the conditional probability
distribution for the frequency of the unique values in the
unsampled portion are each a log likelihood.

6. The method of claim 1 further comprising:

receiving a prior distribution of the number of the unique

values in the unsampled portion to estimate the number
of the unique values in the unsampled portion.

7. A method executed by a database system, comprising:

receiving a query to a database;

calculating, by the database system, a frequency of unique

values in a sampled portion of the database;

estimating, by the database system, a frequency of the

unique values in an unsampled portion of the database,
including indexing a family of joint probability distribu-
tions for the frequency of the unique values in the
unsampled portion by a parameter that includes Gamma
prior distributions for an occurrence rate of the fre-
quency of the unique values in the unsampled portion;
and

selecting, based on the frequency of the unique values in

both the sampled portion and the unsampled portion, a
query path to execute the query.

8. The method of claim 7 further comprising:

estimating a number of unique entry counts (UECs) of

columns in database tables in the database.

10

20

25

35

40

45

55

8

9. The method of claim 7 further comprising:

retrieving a prior distribution of a number of the unique
values in the unsampled portion to estimate the fre-
quency of the unique values in the unsampled portion of
the database.

10. The method of claim 7 further comprising:

decomposing a log-likelihood for the number of the unique

values in the unsampled portion and the frequency ofthe
unique values in the unsampled portion of the list into
three components that include a log-likelihood (L.1)
based on a marginal distribution of the frequency of the
unique values occurring in the sampled portion, a log-
likelihood (1.2) based on a conditional probability dis-
tribution of the frequency of the unique values occurring
in the unsampled portion for the unique values occurring
in the sampled portion, and a log-likelihood (.3) based
on a conditional probability distribution of the fre-
quency of the unique values occurring in the unsampled
portion for the unique values that do not occur in the
sampled portion; and

adding [.1, L2, and L3 together.

11. A database system implemented by a computing sys-
tem including a processing unit, comprising:

a database that stores a table of data; and

a database management system (DBMS) that receives a

first portion of the table without receiving a second
portion of the table, calculates a number of unique val-
ues in the first portion of the table, estimates a number of
unique values in the second portion of the table, and
generates a query execution path through the table based
on the calculated number of unique values in the first
portion and the estimated number of unique values in the
second portion,

wherein the DBMS calculates a first sum of probabilities of

the number of unique values in the first portion of the
table given the parameter, a second sum of probabilities
of the number the unique values in the second portion of
the table given the number of unique values in the first
portion of the table and the parameter, and a third sum of
probabilities of the number of the unique values in the
second portion of the table given the number of unique
values in the first portion of the table being set to zero
and the parameter.

12. The database system of claim 11, wherein the DBMS
uses a prior distribution of the number of unique values in the
table and a statistical model to generate the calculated number
of'unique values in the first portion and the estimated number
of the unique values in the second portion.

13. The database system of claim 11, wherein the DBMS
includes a query optimizer that estimates a number of unique
values in columns of the table.

14. The database system of claim 11, wherein the first sum
is {log p (Xjltheta)}, the second sum is {log p(YjIXj, theta)},
and the third sum is {log p(Yj|Xj =0, theta)}, where Xj is the
number of unique values in the first portion of the table, Yj the
number of the unique values in the second portion of the table,
and theta is the parameter and indexes a probability distribu-
tion of the number of unique values in the first and second
portions.

